direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C32⋊4D9, C32⋊9D18, C33.13D6, C6⋊(C9⋊S3), C18⋊(C3⋊S3), (C3×C6)⋊4D9, (C3×C9)⋊20D6, (C3×C18)⋊11S3, (C32×C18)⋊5C2, (C32×C6).20S3, (C32×C9)⋊10C22, C6.2(C33⋊C2), C3⋊2(C2×C9⋊S3), C9⋊2(C2×C3⋊S3), C3.(C2×C33⋊C2), (C3×C6).22(C3⋊S3), C32.12(C2×C3⋊S3), SmallGroup(324,149)
Series: Derived ►Chief ►Lower central ►Upper central
C32×C9 — C2×C32⋊4D9 |
Generators and relations for C2×C32⋊4D9
G = < a,b,c,d,e | a2=b3=c3=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 2110 in 250 conjugacy classes, 103 normal (9 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, D6, D9, C18, C3⋊S3, C3×C6, C3×C9, C33, D18, C2×C3⋊S3, C9⋊S3, C3×C18, C33⋊C2, C32×C6, C32×C9, C2×C9⋊S3, C2×C33⋊C2, C32⋊4D9, C32×C18, C2×C32⋊4D9
Quotients: C1, C2, C22, S3, D6, D9, C3⋊S3, D18, C2×C3⋊S3, C9⋊S3, C33⋊C2, C2×C9⋊S3, C2×C33⋊C2, C32⋊4D9, C2×C32⋊4D9
(1 131)(2 132)(3 133)(4 134)(5 135)(6 127)(7 128)(8 129)(9 130)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 149)(20 150)(21 151)(22 152)(23 153)(24 145)(25 146)(26 147)(27 148)(28 89)(29 90)(30 82)(31 83)(32 84)(33 85)(34 86)(35 87)(36 88)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 104)(47 105)(48 106)(49 107)(50 108)(51 100)(52 101)(53 102)(54 103)(55 116)(56 117)(57 109)(58 110)(59 111)(60 112)(61 113)(62 114)(63 115)(64 141)(65 142)(66 143)(67 144)(68 136)(69 137)(70 138)(71 139)(72 140)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 50 21)(2 51 22)(3 52 23)(4 53 24)(5 54 25)(6 46 26)(7 47 27)(8 48 19)(9 49 20)(10 65 41)(11 66 42)(12 67 43)(13 68 44)(14 69 45)(15 70 37)(16 71 38)(17 72 39)(18 64 40)(28 159 59)(29 160 60)(30 161 61)(31 162 62)(32 154 63)(33 155 55)(34 156 56)(35 157 57)(36 158 58)(73 115 84)(74 116 85)(75 117 86)(76 109 87)(77 110 88)(78 111 89)(79 112 90)(80 113 82)(81 114 83)(91 142 122)(92 143 123)(93 144 124)(94 136 125)(95 137 126)(96 138 118)(97 139 119)(98 140 120)(99 141 121)(100 152 132)(101 153 133)(102 145 134)(103 146 135)(104 147 127)(105 148 128)(106 149 129)(107 150 130)(108 151 131)
(1 77 16)(2 78 17)(3 79 18)(4 80 10)(5 81 11)(6 73 12)(7 74 13)(8 75 14)(9 76 15)(19 86 45)(20 87 37)(21 88 38)(22 89 39)(23 90 40)(24 82 41)(25 83 42)(26 84 43)(27 85 44)(28 120 152)(29 121 153)(30 122 145)(31 123 146)(32 124 147)(33 125 148)(34 126 149)(35 118 150)(36 119 151)(46 115 67)(47 116 68)(48 117 69)(49 109 70)(50 110 71)(51 111 72)(52 112 64)(53 113 65)(54 114 66)(55 136 105)(56 137 106)(57 138 107)(58 139 108)(59 140 100)(60 141 101)(61 142 102)(62 143 103)(63 144 104)(91 134 161)(92 135 162)(93 127 154)(94 128 155)(95 129 156)(96 130 157)(97 131 158)(98 132 159)(99 133 160)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 130)(2 129)(3 128)(4 127)(5 135)(6 134)(7 133)(8 132)(9 131)(10 154)(11 162)(12 161)(13 160)(14 159)(15 158)(16 157)(17 156)(18 155)(19 100)(20 108)(21 107)(22 106)(23 105)(24 104)(25 103)(26 102)(27 101)(28 69)(29 68)(30 67)(31 66)(32 65)(33 64)(34 72)(35 71)(36 70)(37 58)(38 57)(39 56)(40 55)(41 63)(42 62)(43 61)(44 60)(45 59)(46 145)(47 153)(48 152)(49 151)(50 150)(51 149)(52 148)(53 147)(54 146)(73 91)(74 99)(75 98)(76 97)(77 96)(78 95)(79 94)(80 93)(81 92)(82 144)(83 143)(84 142)(85 141)(86 140)(87 139)(88 138)(89 137)(90 136)(109 119)(110 118)(111 126)(112 125)(113 124)(114 123)(115 122)(116 121)(117 120)
G:=sub<Sym(162)| (1,131)(2,132)(3,133)(4,134)(5,135)(6,127)(7,128)(8,129)(9,130)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,149)(20,150)(21,151)(22,152)(23,153)(24,145)(25,146)(26,147)(27,148)(28,89)(29,90)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,104)(47,105)(48,106)(49,107)(50,108)(51,100)(52,101)(53,102)(54,103)(55,116)(56,117)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115)(64,141)(65,142)(66,143)(67,144)(68,136)(69,137)(70,138)(71,139)(72,140)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,50,21)(2,51,22)(3,52,23)(4,53,24)(5,54,25)(6,46,26)(7,47,27)(8,48,19)(9,49,20)(10,65,41)(11,66,42)(12,67,43)(13,68,44)(14,69,45)(15,70,37)(16,71,38)(17,72,39)(18,64,40)(28,159,59)(29,160,60)(30,161,61)(31,162,62)(32,154,63)(33,155,55)(34,156,56)(35,157,57)(36,158,58)(73,115,84)(74,116,85)(75,117,86)(76,109,87)(77,110,88)(78,111,89)(79,112,90)(80,113,82)(81,114,83)(91,142,122)(92,143,123)(93,144,124)(94,136,125)(95,137,126)(96,138,118)(97,139,119)(98,140,120)(99,141,121)(100,152,132)(101,153,133)(102,145,134)(103,146,135)(104,147,127)(105,148,128)(106,149,129)(107,150,130)(108,151,131), (1,77,16)(2,78,17)(3,79,18)(4,80,10)(5,81,11)(6,73,12)(7,74,13)(8,75,14)(9,76,15)(19,86,45)(20,87,37)(21,88,38)(22,89,39)(23,90,40)(24,82,41)(25,83,42)(26,84,43)(27,85,44)(28,120,152)(29,121,153)(30,122,145)(31,123,146)(32,124,147)(33,125,148)(34,126,149)(35,118,150)(36,119,151)(46,115,67)(47,116,68)(48,117,69)(49,109,70)(50,110,71)(51,111,72)(52,112,64)(53,113,65)(54,114,66)(55,136,105)(56,137,106)(57,138,107)(58,139,108)(59,140,100)(60,141,101)(61,142,102)(62,143,103)(63,144,104)(91,134,161)(92,135,162)(93,127,154)(94,128,155)(95,129,156)(96,130,157)(97,131,158)(98,132,159)(99,133,160), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,130)(2,129)(3,128)(4,127)(5,135)(6,134)(7,133)(8,132)(9,131)(10,154)(11,162)(12,161)(13,160)(14,159)(15,158)(16,157)(17,156)(18,155)(19,100)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,72)(35,71)(36,70)(37,58)(38,57)(39,56)(40,55)(41,63)(42,62)(43,61)(44,60)(45,59)(46,145)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,147)(54,146)(73,91)(74,99)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,144)(83,143)(84,142)(85,141)(86,140)(87,139)(88,138)(89,137)(90,136)(109,119)(110,118)(111,126)(112,125)(113,124)(114,123)(115,122)(116,121)(117,120)>;
G:=Group( (1,131)(2,132)(3,133)(4,134)(5,135)(6,127)(7,128)(8,129)(9,130)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,149)(20,150)(21,151)(22,152)(23,153)(24,145)(25,146)(26,147)(27,148)(28,89)(29,90)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,104)(47,105)(48,106)(49,107)(50,108)(51,100)(52,101)(53,102)(54,103)(55,116)(56,117)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115)(64,141)(65,142)(66,143)(67,144)(68,136)(69,137)(70,138)(71,139)(72,140)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,50,21)(2,51,22)(3,52,23)(4,53,24)(5,54,25)(6,46,26)(7,47,27)(8,48,19)(9,49,20)(10,65,41)(11,66,42)(12,67,43)(13,68,44)(14,69,45)(15,70,37)(16,71,38)(17,72,39)(18,64,40)(28,159,59)(29,160,60)(30,161,61)(31,162,62)(32,154,63)(33,155,55)(34,156,56)(35,157,57)(36,158,58)(73,115,84)(74,116,85)(75,117,86)(76,109,87)(77,110,88)(78,111,89)(79,112,90)(80,113,82)(81,114,83)(91,142,122)(92,143,123)(93,144,124)(94,136,125)(95,137,126)(96,138,118)(97,139,119)(98,140,120)(99,141,121)(100,152,132)(101,153,133)(102,145,134)(103,146,135)(104,147,127)(105,148,128)(106,149,129)(107,150,130)(108,151,131), (1,77,16)(2,78,17)(3,79,18)(4,80,10)(5,81,11)(6,73,12)(7,74,13)(8,75,14)(9,76,15)(19,86,45)(20,87,37)(21,88,38)(22,89,39)(23,90,40)(24,82,41)(25,83,42)(26,84,43)(27,85,44)(28,120,152)(29,121,153)(30,122,145)(31,123,146)(32,124,147)(33,125,148)(34,126,149)(35,118,150)(36,119,151)(46,115,67)(47,116,68)(48,117,69)(49,109,70)(50,110,71)(51,111,72)(52,112,64)(53,113,65)(54,114,66)(55,136,105)(56,137,106)(57,138,107)(58,139,108)(59,140,100)(60,141,101)(61,142,102)(62,143,103)(63,144,104)(91,134,161)(92,135,162)(93,127,154)(94,128,155)(95,129,156)(96,130,157)(97,131,158)(98,132,159)(99,133,160), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,130)(2,129)(3,128)(4,127)(5,135)(6,134)(7,133)(8,132)(9,131)(10,154)(11,162)(12,161)(13,160)(14,159)(15,158)(16,157)(17,156)(18,155)(19,100)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,72)(35,71)(36,70)(37,58)(38,57)(39,56)(40,55)(41,63)(42,62)(43,61)(44,60)(45,59)(46,145)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,147)(54,146)(73,91)(74,99)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,144)(83,143)(84,142)(85,141)(86,140)(87,139)(88,138)(89,137)(90,136)(109,119)(110,118)(111,126)(112,125)(113,124)(114,123)(115,122)(116,121)(117,120) );
G=PermutationGroup([[(1,131),(2,132),(3,133),(4,134),(5,135),(6,127),(7,128),(8,129),(9,130),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,149),(20,150),(21,151),(22,152),(23,153),(24,145),(25,146),(26,147),(27,148),(28,89),(29,90),(30,82),(31,83),(32,84),(33,85),(34,86),(35,87),(36,88),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,104),(47,105),(48,106),(49,107),(50,108),(51,100),(52,101),(53,102),(54,103),(55,116),(56,117),(57,109),(58,110),(59,111),(60,112),(61,113),(62,114),(63,115),(64,141),(65,142),(66,143),(67,144),(68,136),(69,137),(70,138),(71,139),(72,140),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,50,21),(2,51,22),(3,52,23),(4,53,24),(5,54,25),(6,46,26),(7,47,27),(8,48,19),(9,49,20),(10,65,41),(11,66,42),(12,67,43),(13,68,44),(14,69,45),(15,70,37),(16,71,38),(17,72,39),(18,64,40),(28,159,59),(29,160,60),(30,161,61),(31,162,62),(32,154,63),(33,155,55),(34,156,56),(35,157,57),(36,158,58),(73,115,84),(74,116,85),(75,117,86),(76,109,87),(77,110,88),(78,111,89),(79,112,90),(80,113,82),(81,114,83),(91,142,122),(92,143,123),(93,144,124),(94,136,125),(95,137,126),(96,138,118),(97,139,119),(98,140,120),(99,141,121),(100,152,132),(101,153,133),(102,145,134),(103,146,135),(104,147,127),(105,148,128),(106,149,129),(107,150,130),(108,151,131)], [(1,77,16),(2,78,17),(3,79,18),(4,80,10),(5,81,11),(6,73,12),(7,74,13),(8,75,14),(9,76,15),(19,86,45),(20,87,37),(21,88,38),(22,89,39),(23,90,40),(24,82,41),(25,83,42),(26,84,43),(27,85,44),(28,120,152),(29,121,153),(30,122,145),(31,123,146),(32,124,147),(33,125,148),(34,126,149),(35,118,150),(36,119,151),(46,115,67),(47,116,68),(48,117,69),(49,109,70),(50,110,71),(51,111,72),(52,112,64),(53,113,65),(54,114,66),(55,136,105),(56,137,106),(57,138,107),(58,139,108),(59,140,100),(60,141,101),(61,142,102),(62,143,103),(63,144,104),(91,134,161),(92,135,162),(93,127,154),(94,128,155),(95,129,156),(96,130,157),(97,131,158),(98,132,159),(99,133,160)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,130),(2,129),(3,128),(4,127),(5,135),(6,134),(7,133),(8,132),(9,131),(10,154),(11,162),(12,161),(13,160),(14,159),(15,158),(16,157),(17,156),(18,155),(19,100),(20,108),(21,107),(22,106),(23,105),(24,104),(25,103),(26,102),(27,101),(28,69),(29,68),(30,67),(31,66),(32,65),(33,64),(34,72),(35,71),(36,70),(37,58),(38,57),(39,56),(40,55),(41,63),(42,62),(43,61),(44,60),(45,59),(46,145),(47,153),(48,152),(49,151),(50,150),(51,149),(52,148),(53,147),(54,146),(73,91),(74,99),(75,98),(76,97),(77,96),(78,95),(79,94),(80,93),(81,92),(82,144),(83,143),(84,142),(85,141),(86,140),(87,139),(88,138),(89,137),(90,136),(109,119),(110,118),(111,126),(112,125),(113,124),(114,123),(115,122),(116,121),(117,120)]])
84 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3M | 6A | ··· | 6M | 9A | ··· | 9AA | 18A | ··· | 18AA |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 81 | 81 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
84 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | S3 | D6 | D6 | D9 | D18 |
kernel | C2×C32⋊4D9 | C32⋊4D9 | C32×C18 | C3×C18 | C32×C6 | C3×C9 | C33 | C3×C6 | C32 |
# reps | 1 | 2 | 1 | 12 | 1 | 12 | 1 | 27 | 27 |
Matrix representation of C2×C32⋊4D9 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 1 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 18 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 14 | 0 | 0 |
0 | 0 | 5 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 0 | 1 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 17 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,1,0,0,0,0,18,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,18,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,5,0,0,0,0,14,2,0,0,0,0,0,0,0,1,0,0,0,0,18,18],[1,18,0,0,0,0,0,18,0,0,0,0,0,0,14,12,0,0,0,0,17,5,0,0,0,0,0,0,18,0,0,0,0,0,1,1] >;
C2×C32⋊4D9 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_4D_9
% in TeX
G:=Group("C2xC3^2:4D9");
// GroupNames label
G:=SmallGroup(324,149);
// by ID
G=gap.SmallGroup(324,149);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,2090,986,579,2164,7781]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations